Most up-to-date list of publications can be found at this google scholar page: https://scholar.google.com/citations?hl=cs&user=AXO1lWYAAAAJ&view_op=list_works&sortby=pubdate 

Photocapacitive neuromodulation with the organic electrolytic photocapacitor (OEPC)

Photocapacitive stimulation references:

  1. M. S. Ejneby, M. Jakešová, J. J. Ferrero, L. Migliaccio, I. Sahalianov, Z. Zhao, M. Berggren, D. Khodagholy, V. Đerek, J. N. Gelinas, E. D. Głowacki, Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor Nature Biomed. Eng. 2021, DOI 10.1038/s41551-021-00817-7. https://www.nature.com/articles/s41551-021-00817-7
  2. F. Missey, B. Botzanowski, L. Migliaccio, E. Acerbo, Organic electrolytic photocapacitors for stimulation of the mouse somatosensory cortex J. Neural Eng. 2021, 18, 066016. https://iopscience.iop.org/article/10.1088/1741-2552/ac37a6/meta
  3. Ðerek, V., Rand, D., Migliaccio, L., Hanein, Y. & Głowacki, E. D. Untangling Photofaradaic and Photocapacitive Effects in Organic Optoelectronic Stimulation Devices. Front. Bioeng. Biotechnol. 8, 284 (2020). 
  4. Ejneby, M. S. et al. Extracellular Photovoltage Clamp Using Conducting Polymer-Modified Organic Photocapacitors. Adv. Mater. Technol. 5, 1900860 (2020).
  5. Jakešová, M. et al. Optoelectronic control of single cells using organic photocapacitors. Sci. Adv. 5, eaav5265 (2019).
  6. Rand, D. et al. Direct Electrical Neurostimulation with Organic Pigment Photocapacitors. Adv. Mater. 30, 1707292 (2018).

 

The OEPC is a device which transduces optical pulses to ionic displacement currents in the surrounding electrolyte. 

 

The OEPC device can be integrated onto thin plastic cuffs which can be implanted and fixed around peripheral nerves. Using tissue-penetrating deep red and infrared wavelengths, the implants can be actuated, in order to get long-term chronic stimulation in animals. doi: https://doi.org/10.1101/2020.07.01.182113

Photo(electro) faradaic devices

Catalytic reactions with organic semiconductors. At the basic level, we are always fascinated with electro- and photo-catalytic reactions occurring at the interfaces of organic semiconductors and aqueous electrolytes. Such questions are of broad interest, ranging from biochemical/physiological phenomena to industrial chemical processes. In particular, we strive to have world-class know how on oxygen reduction chemistry in the context of organic electronic materials.

 

Photofaradaic processes references:

  1. Wei, R., Gryszel, M., Migliaccio, L. & Głowacki, E. D. Tuning photoelectrochemical performance of poly(3-hexylthiophene) electrodes via surface structuring . J. Mater. Chem. C 10897–10906 (2020). doi:10.1039/d0tc01477j
  2. Gryszel, M. & Głowacki, E. D. Organic thin film photofaradaic pixels for on-demand electrochemistry in physiological conditions. Chem. Commun. 56, 1705–1708 (2020).
  3. Migliaccio, L., Gryszel, M., Đerek, V., Pezzella, A. & Głowacki, E. D. Aqueous photo(electro)catalysis with eumelanin thin films. Mater. Horizons 5, 984–990 (2018).
  4. Gryszel, M. et al. General Observation of Photocatalytic Oxygen Reduction to Hydrogen Peroxide by Organic Semiconductor Thin Films and Colloidal Crystals. ACS Appl. Mater. Interfaces 10, 13253–13257 (2018).
  5. Warczak, M., Gryszel, M., Jakešová, M., Đerek, V. & Głowacki, E. D. Organic semiconductor perylenetetracarboxylic diimide (PTCDI) electrodes for electrocatalytic reduction of oxygen to hydrogen peroxide. Chem. Commun. 54, 1960–1963 (2018).
  6. Gryszel, M., Markov, A., Vagin, M. & Głowacki, E. D. Organic heterojunction photocathodes for optimized photoelectrochemical hydrogen peroxide production. J. Mater. Chem. A 6, 24709–24716 (2018).
  7. Jakešová, M. et al. Hydrogen-Bonded Organic Semiconductors as Stable Photoelectrocatalysts for Efficient Hydrogen Peroxide Photosynthesis. Adv. Funct. Mater. 26, 5248–5254 (2016).

 

Management

Prof. Eric Daniel Glowacki, Ph.D.
Prof. Eric Daniel Glowacki, Ph.D.
Research Group Leader
Personal Profile