Atomic layer deposition system Ultratech/CambridgeNanoTech Fiji 200 (ALD)

CONTACT US

Guarantor: Marek Eliáš, Ph.D.
Technology / Methodology: Etching & Deposition
Instrument status: Operational Operational, 16.4.2025 13:55
Equipment placement: CEITEC Nano - C1.34
Research group: CF: CEITEC Nano


Description:

Atomic Layer Deposition is a deposition technique for very thin layers with the thickness control down to a single atomic layer. It belongs to the CVD techniques family. The thickness precision is achieved by pulsed deposition, where first a metal-containing precursor is introduced into the chamber and after a short time (allowing for monolayer adsorption) the chamber is pumped down. The following step is exposure to the oxidizing precursor (for oxides) or nitrogen-containing precursor (for nitrides). Thus, a monolayer of the target material is grown. The metal-containing precursors are usually organometallic ones, for oxidation a water or oxygen plasma can be used, nitridation is done using nitrogen plasma. To achieve the deposition in the ALD mode, the sample is heated up to a certain temperature, for most processes being in the range from 150 to 300 °C.


Publications:

  • Thalluri, S. M.; Rodriguez‐Pereira, J.; Michalicka, J.; Kolíbalová, E.; Hromadko, L.; Slang, S.; Pouzar, M.; Sopha, H.; Zazpe, R.; Macak, J. M., 2025: Enhancing Alkaline Hydrogen Evolution Reaction on Ru- Decorated TiO2 Nanotube Layers: Synergistic Role of Ti3+, Ru Single Atoms, and Ru Nanoparticles. ENERGY & ENVIRONMENTAL MATERIALS , doi: 10.1002/eem2.12864; FULL TEXT
    (TITAN, LYRA, KRATOS-XPS, RIGAKU3, ALD)
  • DESHMUKH, S.; GAO, W.; MICHALIČKA, J.; PUMERA, M., 2024: Nanoscopic decoration of multivalent vanadium oxide on Laser-Induced graphene fibers via atomic layer deposition for flexible gel supercapacitors. CHEMICAL ENGINEERING JOURNAL 480, doi: 10.1016/j.cej.2023.147895; FULL TEXT
    (ALD, KRATOS-XPS, RIGAKU3, TITAN, WITEC-RAMAN)
  • Kunc, J.; Fridrišek, T.; Shestopalov, M.; Jo, J.; Park, K., 2024: Graphene–insulator–metal diodes: Enhanced dielectric strength of the Al2O3 barrier. AIP ADVANCES 14(9), p. 1 - 9, doi: 10.1063/5.0223763; FULL TEXT
    (RAITH, RIE-FLUORINE, ALD, EVAPORATOR, WIRE-BONDER, KRATOS-XPS)
  • Henrotte, O.; Kment, Š.; Naldoni, A., 2024: Mass Transport Limitations in Plasmonic Photocatalysis. NANO LETTERS 24(29), p. 8851 - 8858, doi: 10.1021/acs.nanolett.4c01386; FULL TEXT
    (ALD)
  • AIGNER, A.; LIGMAJER, F.; ROVENSKÁ, K.; HOLOBRÁDEK, J.; IDESOVÁ, B.; MAIER, S.; TITTL, A.; MENEZES, L., 2024: Engineering of Active and Passive Loss in High-Quality-Factor Vanadium Dioxide-Based BIC Metasurfaces. NANO LETTERS 24(35), p. 10742 - 8, doi: 10.1021/acs.nanolett.4c01703; FULL TEXT
    (KAUFMAN, ALD, EVAPORATOR)

Show more publications...