We are looking for talented PhD, MSc and BSc candidates with different backgrounds (physics, electrical engineering, chemistry). You can find some open theses topics below. If you are interested in joining our research group, feel free to contact us!
The group of Dr. Hermann Detz focuses on epitaxial materials for applications in near- and mid-infrared sensing platforms. Particular emphasis is placed on the integration of novel plasmonic materials with established III-V optoelectronic devices. The group provides a multi-disciplinary, international environment. Scientific results are published in peer-reviewed journals and presented at international conferences.
PhD position "Fabrication and Structural Characterization of Novel Plasmonic Materials"
Plasmonic waveguides were demonstrated to be an ideal component of monolithic infrared sensing platforms. While at present, they are commonly used for the confinement and guidance of optical modes, they offer a lot of potential to make a transition from purely passive to functional components of optical systems. The candidate should investigate the fabrication of Heusler-compounds for plasmonics applications at near- and mid-infrared wavelengths by UHV sputtering processes. Experimental work will include the nucleation and growth in different semiconductor surfaces as well as the structural characterization of these materials by X-ray diffraction and transmission electron microscopy. Previous experience with relevant equipment within the CEITEC Nano Facilities (UHV sputtering, XRD, TEM) is of advantage. Applicants should be fluent in English and committed to self-motivated work in an international research group. Further relevant skills include utility programming for data analysis and lab automation (e.g. C++, Ruby, Python, Linux) as well as documentation and publication of results (LaTeX, etc.).
PhD position "Electronic and Optical Characterization of Novel Plasmonic Materials"
Plasmon propagation in metals and metallic compounds provides an ideal foundation for strong interaction between an optical mode and an electronic system. The functionality of plasmonic layers can be extended far beyond simple waveguide applications, e.g. by structuring into meta-surfaces. This thesis will be focused on the development of functional plasmonic surfaces and their interaction with semiconductor heterostructures. The candidate is expected to characterize the electrical and optical properties of novel plasmonic materials to pave the road for device integration with monolithic mid-infrared sensors. Previous experience with measurement setups at CEITEC (i.e. probe station, cryostats, ellipsometry) is of advantage. Applicants should be fluent in English and committed to self-motivated work in an international research group. Further relevant skills include utility programming for data analysis and lab automation (e.g. C++, Ruby, Python, Linux) as well as documentation and publication of results (LaTeX, etc.).
PhD position "Integration of Plasmonic Nanoparticles with Semiconductor Heterostructures"
Plasmonic nanoparticles allow efficient coupling between optical fields and quantum-mechanical systems within semiconductor-heterostructures. The optical response of the nanoparticles depends on their shape and size and can therefore be engineered through lithographic processes. The main goal of this thesis will be to optimize the sputtering and structuring to realize well-defined geometries. The electronic and optical properties of hybrid systems (plasmonic particles + two-dimensional electron gas) shall be characterized to allow their application as beam-shaping elements for infrared sensing platforms. Previous experience with measurement setups at CEITEC (i.e. UHV sputtering, electron-beam lithography, laser lithography, ellipsometry) is of advantage. Applicants should be fluent in English and committed to self-motivated work in an international research group. Further relevant skills include utility programming for data analysis and lab automation (e.g. C++, Ruby, Python, Linux) as well as documentation and publication of results (LaTeX, etc.).