

Central European Institute of Technology BRNO | CZECH REPUBLIC

AFM Data processing

Šimon Klimovič

Summer workshop on BioAFM microscopy 2023

13.09.2023

Layout of the presentation

- Types of AFM data
- Imaging
 - AFM images leveling data, artefacts, surface reconstruction, masks, analysis, LAFM
 - Real time scans of vertical deflection contraction properties of CMs, peaks detection, HRV analysis
- Force spectroscopy
 - What is a force distance curve (FDC)?
 - Young`s modulus models, analysis
 - Alternative analysis of FDCs SMFS, thickness of lipid bilayers, rupture events
- Indentation
 - Rheology analysis, viscoelasticity

 Gwyddion is a program for AFM data visualization and analysis.

🥰 e — 🗆 🗙
<u>F</u> ile
<u>E</u> dit
<u>D</u> ata Process
<u>G</u> raph
<u>V</u> olume Data
<u>X</u> YZ Data
<u>C</u> urve Maps
Info
(표) 💭 💭 💭
Data Process
😪 🖪 🔢 🖻 🔳
🜠 🚍 🗄 🔝 🚳
🔉 航 🕥 🗾 🐄
Graph
调订计算测
k 🛛 🖉 🎬
🗯 🔼 🔀 🏪 🚀
🐠 🐹 💌 🏥 💽
*Zo

- Gwyddion is a program for AFM data visualization and analysis.
- Plane level based on mean plane substraction

- H				~
<u>F</u> ile				
<u>E</u> dit				
<u>D</u> ata	Proces	is		
<u>G</u> rap	h			
<u>V</u> olu	me Dat	ta		
<u>X</u> YZ	Data			
<u>C</u> urv	e Map	5		
<u>I</u> nfo				
	v	-	~	
Ð	Þ	✐	$\langle \rangle$	
🖃 Dat	a Proces	55		
÷			Ē	
\mathbf{i}			•••	6
××××	ſſ,	١		
🗄 Gra	ph			
		T	•	\mathbf{A}
상	₹∎	T T	<u>_</u>	シル
5	٩I	\mathbf{N}	3	∞*%
***	\wedge	\geq	÷	
	××	×	ŧ	
¥o				

- Gwyddion is a program for AFM data visualization and analysis.
- Plane level based on mean plane substraction
- Facet levelling

- Three-point levelling
- Lines intersection levelling

G ∈ − □ ×
<u>F</u> ile
<u>E</u> dit
Data Process
<u>G</u> raph
<u>V</u> olume Data
XYZ Data
<u>C</u> urve Maps
Info
Data Process
Graph Tools
k] /] + A 🎧
ka 🛿 🖉 🖄
羔 🔼 🔁 🏝 🚀
🌒 📐 💌 🂵 🔛
X₀

• Gwyddion is a program for AFM data visualization and analysis.

*⁄0

💒 🔍 با 🕻

羔 🔼 🔁 🚡 🛒

🌒 📐 💌 🏥 🔛

- Plane level based on mean plane substraction
- Facet levelling
- Three-point levelling
- Lines intersection levelling
- Colour range and Fix zero

🬀 e — 🗆 🗙		
<u>F</u> ile		
<u>E</u> dit	80+40nm 01.0 00007.spm [ZSensor] 1:1.1 (Gwyddion) - 🗆 🗙	🕼 Color Range — 🗆 🗙
Data Process	• 0μm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 159.5 nm	📕 🛃 🛆 裕 🖪 default
<u>G</u> raph		
<u>V</u> olume Data		
XYZ Data		/ min
Curve Maps		Start: 29.713 nm
<u>I</u> nfo		End: 159.477 nm
View		Set to <u>M</u> asked Set to <u>U</u> nmasked
🗩 😥 🗩 🥥		Set to <u>Full Range</u> Invert Mapping
Data Process		Adapt color range to selection
		Minimum: 29.7 nm Maximum: 159.5 nm
		Set Zero to Color Map Minimum
		Origin X 0.000 μm 0 🗘 px
法 🕼 🕥 🗾 🍇		Y 0.000 μm 0 + px Size
Graph Tools		Width 1.006 μm 512 τ px Height 1.006 μm 512 τ px
₽1/1 + ♪ m	29.7 (0.392 μm, 0.951 μm): 105.0 nm = 1.050e-07 m	Help Hide

Line artefacts

- Removing AFM artefacts in from the image
 - Align rows using different methods
 - Correct horizontal scars

🥰 e — 🗆 🛛 🕹	
<u>F</u> ile	
<u>E</u> dit	
Data Process	
<u>G</u> raph	
<u>V</u> olume Data	
XYZ Data	
<u>C</u> urve Maps	
<u>I</u> nfo	
(+) (!!) (=) <	
Data Process	
£ <u>• • •</u> •	
🛛 🖃 🖻 🔝 🚳	:
🔊 📶 🌖 📕 🛎	
 	
₽ / 🕂 🗛 🚮	ľ.
🖌 🗟 🖂 🖉	<u>W</u>
羔 🔼 🔁 🚡 🕷	7
🌒 📐 💌 🏥 🞇	
*/0	

Line artefacts

- Removing AFM artefacts in from the image
 - Align rows using different methods
 - Correct horizontal scars

🥰 e — 🗆 🗙
<u>F</u> ile
Edit
Data Process
<u>G</u> raph
<u>V</u> olume Data
XYZ Data
<u>C</u> urve Maps
<u>I</u> nfo
(±) (±) (=) 💜
Data Process
¥G 🖪 🔢 🚾 🗖
🔉 🚮 🕥 🗾 🗞
Graph Graph
₩ /1 + ♪ 鮞
🖌 if 🔽 🔁 🌌
🚣 🔼 🔁 🚡 🛒
🌲 💌 🂵 💽
7o

Tip convolution artefacts

- Object can be seen bigger due to broken or dirty AFM tip
- In most cases its better to change tip but it can be corrected after to an extend

TEC

<u>F</u> ile	
Edit	
<u>D</u> ata Process	
<u>G</u> raph	
<u>V</u> olume Data	
XYZ Data	
Curve Maps	
Info	
View	
€ 🗊 🖉) 🔷
Data Process	
	l 🔁 📃
🜠 📃 E	-
) 🗾 🍢
🗄 Graph	
⊳∎ /∎ +	- ት 🖑
🖌 👯 📐	3 🖄
🚣 🔼 💈	s 🚡 📢
e 🔨 🖸	c 🚺 💽
*Zo	

Tip convolution artefacts

 Data process > Tip and Indentation > Blind estimation

EITEC

• Or *Model Tip*, where we put dimensional information about the tip

Tip convolution artefacts

- Data process > Tip and Indentation > Blind estimation
- Or *Model Tip,* where we put dimensional information about the tip
- Data process > Tip and Indentation > Surface reconstruction

Masks

 Mask editor can help you define masks with drawing tools or shapes.

羔 🔼 🔁 🚡

🔶 🔀 🗷 İ 🔀

- U

*⁄0

🥰 e — 🗆 🛛 🔍						
<u>F</u> ile						
Edit						
Data Process	90 : 40mm 01 0 00007 cmm	Surface reconstruction 21 1.1 1 /G	uturd diam) -		March Editors	
<u>G</u> raph	▶ 0 µm , _ 0.2 ,	0.4 , 0.6 ,	0.8	129.8 nm	Editor	- 0
<u>V</u> olume Data	€- 1			120.0	O Shapes	
XYZ Data			North	110.0	Mode:	. \$
Curve Maps			- 194 B.O	100.0	Shape:	
<u>I</u> nfo	2: 1		mail.	90.0	Thin lines are 4-	-connected
View				-	• Drawing Tools	
🗩 🗊 🗩 🥥			COM.	80.0	Tool: 🛛 🥇	🖉 🏖 🕺
		A MARK		70.0	Radius:	6
			100	60.0	Actions	
	A REAL PROPERTY	A		50.0	Invert Re	move <u>F</u> ill
				50.0	Fill Voids 🗌 Fill r	non-simple-connected
				40.0	Grow/Shrink	
			State State	30.0	Grow	Shrink
					Amount:	1 📮
				20.0	Distance type:	Euclidean 🗸
Graph Track	N		N	10.0	Shrink from bo	rder
		L. ARTIN			Prevent grain m	erging by growing
R / + ♪ ≦	(0.151 µm, 0.892 µm): 57.3 nm = 1	5.731e-08 m		0.0	Help	Hide
🖌 🛂 🖓 🖓						

×

1 [▲] px

6 🗘 px

AFM Data processing 14

Masks

- Mask editor can help you define masks with drawing tools or shapes.
- Mark Grains by Threshold tool can define mask based on physical dimension (Height, E)

 \times

€ ∈ −

*⁄0

Masks

- Mask editor can help you define masks with drawing tools or shapes.
- Mark Grains by Threshold tool can define mask based on physical dimension (Height, *E*)
- You can extract statistical information about masked/ non-masked regions.

🬀 e — 🗆 🗙
<u>F</u> ile
<u>E</u> dit
<u>D</u> ata Process
<u>G</u> raph
<u>V</u> olume Data
<u>X</u> YZ Data
<u>C</u> urve Maps
<u>I</u> nfo
) 💬 💭 💜
Data Process
🔓 🖪 🔢 🔂 🗖
🔀 🗮 🗄 🔛 🔗
🔊 🚮 🕥 🗾 🌆
Graph
月11日
🖌 📴 🖊 🔛 🔛
🗯 🔼 🔀 🏪 🚀
🌒 📐 💌 🏥 💽
X₀

Analysis

8

 Profile sections can be obtained and then exported using *Extract profiles*

Ge	_			\times
<u>F</u> ile				
<u>E</u> dit				
<u>D</u> ata	Proces	ss		
<u>G</u> rap	h			
<u>V</u> olu	me Dat	ta		
<u>X</u> YZ	Data			
<u>C</u> urv	e Map	s		
<u>I</u> nfo				
	×	-	~	
€	(11)	Θ	$\langle \rangle$	
🗆 Dat	a Proces	55		
ᢡ			Ē	
\mathbf{X}				6
××	ılı.			
+ Gra	ph Is			
\mathbb{R}	1	۰ ۲	V	M
5	٩	Ν	3	00 **()
.	\land	\geq	£	
	××	×	t	
*∕o				

AFM Data processing 16

Analysis

- Profile sections can be obtained and then exported using Extract profiles
- Standardized onedimensional roughness parameters.

0.2

Analysis

- Profile sections can be obtained and then exported using *Extract profiles*
- Standardized onedimensional roughness parameters.
- And many more...
- Info > User guide

🥵 e − 🗆 🗙
<u>F</u> ile
<u>D</u> ata Process
<u>o</u> roph
Volume Data
XYZ Data
urve maps
View
🗩 🗊 🗩 🤿
Data Process
🔓 🖳 🔢 🔢 🕞
🔀 🚍 🖻 💽 🔗
🐹 🚮 🕥 📕 🍇
Graph Table
ki /i T 🏞 🔊
🍃 🗜 🖊 🌫 🎬
🚣 🔼 🔁 🚡 🚀
🦺 💽 🗵 🎦
*Zo

Repeat (Dimensions and Units)	Ctrl+F
Re-show (Dimensions and Units)	Shift+Ctrl+F
Basic Operations	+
Cali <u>b</u> ration	•
Correct Data	+
<u>D</u> istortion	+
<u>G</u> rains	+
Integral Transforms	+
Level	•
<u>M</u> ask	+
Measure <u>F</u> eatures	+
Multidata	+
<u>P</u> resentation	+
SPM Modes	•
<u>S</u> tatistics	+
Synthetic	+

Localized AFM

 Factors that can limit spatial resolution of AFM: adhesion, mobility of scanned molecules, tip artefacts

Hoogenboom, B.W. Stretching the resolution limit of atomic force microscopy. *Nat Struct Mol Biol* **28**, 629–630 (2021). https://doi.org/10.1038/s41594-021-00638-x

Localized AFM

- Factors that can limit spatial resolution of AFM: adhesion, mobility of scanned molecules, tip artefacts
- Instead mapping the sample height, we can generate local height maxima in the repeated AFM images and plot peakingprobability map > Extrapolate
- More in presentation by D. Kabanov, Today at 15:00

Contraction properties of CMs

- Time recording of vertical deflection
- (hPSC-CMs) differentiated in form of cellular clusters – Embryoids bodies
- AFM-based biosensor setup

Contraction properties of CMs

Contraction properties of CMs

- Time recording of vertical deflection
- Python-based script for detection peaks
- Basic parameters Beat rate and contraction force
- Heart rate variability variation in the beat-to-beat interval.

Beat rate (bpm)

Layout of the presentation

- Types of AFM data
- Imaging
 - AFM images leveling data, artefacts, surface reconstruction, masks, analysis, LAFM
 - Real time scans of vertical deflection contraction properties of CMs, peaks detection, HRV analysis

Force spectroscopy

- What is a force distance curve (FDC)?
- Young`s modulus models, analysis
- Alternative analysis of FDCs SMFS, thickness of lipid bilayers, rupture events
- Indentation
 - Rheology analysis, viscoelasticity

- Cantilever approach the surface, press with defined force (setpoint) and the withdraw
- Resulting vertical deflection vs. distance (height) curve is FDS

- Cantilever approach the surface, press with defined force (setpoint) and the withdraw
- Resulting vertical deflection vs. distance (height) curve is FDS
- We can obtain Young's modulus (*E*) by fiting the interaction part with non-linear function

- Cantilever approach the surface, press with defined force (setpoint) and the withdraw
- Resulting vertical deflection vs. distance (height) curve is FDS
- We can obtain Young's modulus (*E*) by fiting the interaction part with non-linear function
- Single point or multiple point (Force imaging, Peakforce, QI, etc.)

Models for processing FDCs

- Basic models for elastic deformation are Hertz and Sneddon, but they are neglecting surfaces forces and adhesion – very prevalent with biological samples
- For more adhesive samples advanced models such as JKR, DMT are used.

- Cantilever approach the surface, press with defined force (setpoint) and the withdraw
- Resulting vertical deflection vs. distance (height) curve is FDS
- We can obtain Young's modulus (*E*) by fiting the interaction part with non-linear function
- Single point or multiple point (Force imaging, Peakforce, QI, etc.)
- Software: AtomicJ, JPK Processing, Nanoscope, Mountain SPIP

 High quality third-party software for processing AFM mechanical data

\Lambda AtomicJ		
ile Controls Help		
، 😻 🤹	· 🔤 🔤 🌑 🦻	
Processing assistar	nt	×
	Curve selection Select files containing curves to process	
Batch no 1		
Add		
Clear		
Preprocess		
Patchwork		
	<< Back Next >> Finish Can	cel

- High quality third-party software for processing AFM mechanical data
- Suported data files: JPK, Nanoscope, Innova, Asylum, NT-MDT and Park
- Batch processing

🛆 AtomicJ		
File Controls Help		
ک 📚 🤃		
Processing assist	ant	×
	Curve selection Select files containing curves to process	
Batch no 1		
Add		
Preprocess		
Patchwork		
	<< Back Next >> Finish	Cancel

- High quality third-party software for processing AFM mechanical data
- Suported data files: JPK, Nanoscope, Innova, Asylum, NT-MDT and Park
- Batch processing
- Various models for sphere, pyramidical, conical, hyperboloid tips etc.

	Specify processin All settings in the ge	g settings neral tab are mandatory				
atch no 1	General Advanced	d Output				
		Ba	atch n	ame		
	1					
	Processing			Sample		
	Automati	c 🗿 Manual 🔵		Poisson ratio		-
	Contact estim	Classical focused grid	\sim	Adhesive energy	Calculate from fit	\sim
	Estimation me	Based on contact model	\sim	Curve		
Import	Model fit	Classical (L2)	\sim	Baseline degree		2 🔹
Export	Fit to	Withdraw	\sim	In-contact degree		1 🔺
	Model			Calibration		
	Мо	odel Sphere (JKR)	\sim	Spring (N/m)	₽ 🕞 🕞 Re	ad-in
	Radius (j	um)	•	InvOLS (µ	₽ ■ Re	ad-in
	Half-angle	(°)	*		Calibrate	
	Transition radius (um) 📫 🔪				

- High quality third-party software for processing AFM mechanical data
- Suported data files: JPK, Nanoscope, Innova, Asylum, NT-MDT and Park
- Batch processing
- Various models for sphere, pyramidical, conical, hyperboloid tips etc.

File Measure Chart Data Process ROI Profiles Curves Stacks

- High quality third-party software for processing AFM mechanical data
- Suported data files: JPK, Nanoscope, Innova, Asylum, NT-MDT and Park
- Batch processing
- Various models for sphere, pyramidic conical, hyperboloid tips etc.

- High quality third-party software for processing AFM mechanical data
- Suported data files: JPK, Nanoscope, Innova, Asylum, NT-MDT and Park
- Batch processing
- Various models for sphere, pyramidic conical, hyperboloid tips etc.
- Program calculate lots of different channels

Height

Adhesion

 Many tools for selecting regions of interest from which data can extracte

Adh

You

C

	Maps								
	File Measure	Chart Data Proc	ess ROI Profiles	Curves Stacks					
	4T1_CTRL-dat 4T1_IC5_rep	ta-2023.06 • Y	Adhesion work R 'oung's modulus T	t Squared Adhes Transition indentation	ion Vertical Deflection Transition force Co	Slope Intact position	Height (measured) Contact force	Height Deformation	9
d			40			$\left(\right)$	3	14 13 12	•1 < •1 / •1 /
				2	1			11 10 Young	
				and set		120	125	8 m od	Σ
tics fo	r ROIs		⁻ -10	<i>ta (</i> -	×			7 6 5	Σ_{α}
tics fo stomi	r ROIs ze		-10		×		h	7 ulus (kPa) 5 4	Σα
tics fo stomiz	r ROIs ze Vertical D	eflection	Slope Hei	ght (measured)	×			7 ulus (kPa) 5 4 3	
tics fo stomi: ion tact fo	r ROIs ze Vertical D prce	eflection S Deformation	Slope Hein Adhesion	ght (measured) n work	Height R Squared			7 Ulus (KPa) 5 4 3 2	
tics fo stomi: on tact fo s mod	r ROIs ze Vertical D orce ulus Tran	eflection s Deformation sition indentation	Slope Hei Adhesion Transitio	ght (measured) n work n force Co	Height R Squared intact position	20 30	40	7 Llus (KPa) 5 4 3 2	
ics fo tomiz on act fo s mode	r ROIs ze Vertical D orce ulus Tran Count	eflection S Deformation sition indentation Mean (kPa)	Slope Heig Adhesion Transitio	ght (measured) n work n force Co Median (kPa)	Height R Squared Intact position Q1 (kPa)	20 30	40	7 G 5 4 3 2 1	
ics fo tomiz on act fo s mode	r ROIs ze Vertical D orce ulus Tran Count 317	eflection S Deformation sition indentation Mean (kPa) 2.2695	Slope Hei Adhesion Trim 5% (kPa) .002	ght (measured) n work n force Co Median (kPa) 1.7747	Height R Squared Intact position Q1 (kPa)	20 30	40	7 Lilus (KPa) 5 4 3 2 1	
ics fo tomiz on cact fo s mode ers	vr ROIs ze Vertical Do orce ulus Tran Count 317 213	eflection S Deformation sition indentation Mean (kPa) 2.2695 2.03	Slope Hei Adhesion Transitio Trim 5% (kPa) .002 .9245	ght (measured) n work n force Co Median (kPa) 1.7747 1.7723	Height R Squared Intact position Q1 (kPa) 1.1498 1.2094	20 30	40	7 ulus (KPs) 5 4 3 2 1	
ics fo tomiz on tact fo s mode ers 's\	vr ROIs ze Vertical Do orce ulus Tran Count 317 213 62	eflection 9 Deformation sition indentation Mean (kPa) 2.2695 2.03 3.5748	Slope Hei Adhesion Transitio Frim 5% (kPa) .002 .9245 .1091	ght (measured) n work n force Co Median (kPa) 1.7747 1.7723 2.2719	Height R Squared intact position Q1 (kPa) 1.1498 1.2094 1.4832	20 30	40	7 Lilus (KPa) 5 4 3 2 1	
tics fo stomiz ion tact fo 's mod 's mod 's mod 's mod 's mod 's mod	r ROIs ze vertical D orce ulus Tran Count 317 213 62 8	eflection S Deformation sition indentation Mean (kPa) 2.2695 2.03 3.5748 1.6187	Slope Hei Adhesion Transitio Frim 5% (kPa) .002 .9245 .1091 .5246	ght (measured) n work n force Co Median (kPa) 1.7747 1.7723 2.2719 1.1054	Height R Squared Intact position Q1 (kPa) 1.1498 1.2094 1.4832 0.6902	20 30	40	7 Llus (KPa) 5 4 3 2 1	

- Many tools for selecting regions of interest from which data can extracted
- Line profiles measurements

 Many tools for selecting regions of interest from which data can extracted

Young's modulus

- Line profiles measurements
- Histograms and box plots

👗 Maps

Single molecule force spectroscopy (SMFS)

- Protein domains unfolding by means of AFM.
- Usually, protein is immobilized on the surface with golden tip cantilever approaching.

Single molecule force spectroscopy (SMFS)

- Protein domains unfolding by means of AFM.
- Usually, protein is immobilized on the surface with golden tip cantilever approaching.
- FDCs have typical "sawtooth pattern" representing each domain folding event
- Curve can be fitted with Worm-like chain model in JPK Processing software.
- Unfolding force, Length

Single molecule force spectroscopy (SMFS)

• Lorem i

Scanning of lipid bilayers by AFM

- Scanning of phospholipidic bilayer (PLB) by AFM.
- When applying force during FDC rupture of PLB occur (= rupture event)

Scanning of lipid bilayers by AFM

- Scanning of phospholipidic bilayer (PLB) by AFM.
- When applying force during FDC rupture of PLB occur (=rupture event)
- Difficult analyzing but we are now working on automatization of the process.

Layout of the presentation

- Types of AFM data
- Imaging
 - AFM images leveling data, artefacts, surface reconstruction, masks, analysis, LAFM
 - Real time scans of vertical deflection contraction properties of CMs, peaks detection, HRV analysis
- Force spectroscopy
 - What is a force distance curve (FDC)?
 - Young`s modulus models, analysis
 - Alternative analysis of FDCs SMFS, thickness of lipid bilayers, rupture events
- Indentation
 - Rheology analysis, viscoelasticity

Indentation analysis

- Mechanical characterization of soft materials
- Indentation are usually in µm, where hyperelastic effects are more pronounced and normal elastic models are not correct.

Indentation analysis

- Mechanical characterization of soft materials
- Indentation are usually in µm, where hyperelastic effects are more pronounced and normal elastic models are not correct.
- Additional hold segment is measured and fitted with hyperelastic models

Indentation analysis

- Indentation are usually in µm, where hyperelastic effects are more pronounced and normal elastic models are not correct.
- Additional hold segment is measured and fitted with hyperelastic models
- Typical samples are **hydrogels**, cartilage samples, tissue sample
- More information in practical session Thursday at 13:00 – L. Pařízek, MTM

Central European Institute of Technology BRNO | CZECH REPUBLIC

Thank you for your attention!

Acknowledgement:

CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium, funded by MEYS CR infrastructure project LM2018127, is gratefully acknowledged for the financial support of the measurements at the CF Nanobiotechnology.

Contact details :

CEITEC MU, Masaryk University, Brno, Czech Republic Email: simon.klimovic@ceitec.muni.cz Phone: +420728615218

Summer workshop on BioAFM microscopy 2023

13.09.2023