

Investigation of Mechanisms Underlying Stiffness Change in Prostate Cancer Cells:

From Tailored Experiments to Computational Simulations

LUCIE JADRNÁ, J. GUMULEC, J. BURŠA

INTRODUCTION: CELLULAR STIFNESS IN PROSTATE CANCER CELLS

- Primary stages:
 - Increased motility = higher energy demands
 - Alterations in metabolism
 - Decreased cellular stifness
- Secondary stages:
 - Stiffness increase
 - EXPLAINED BY INNER REORGANIZATION?

Amend, 2020. DOI: 10.32907/RO-117-6265

METHODS

SIZE & SHAPE (mean)

	22Rv1	22Rv1 (Zn res)	PC-3	PC-3 (Zn res)
Cell radius [µm]	19.62	21.39	27.79	35.39
Cell height [µm]	8.99	9.68	9.32	9.75
Nucleus radius [µm]	11.08	11.63	13.75	14.68
Nucleus height [µm]	5.15	5.61	4.78	5.17

SIZE & SHAPE (mean)

	22Rv1	22Rv1 (Zn res)	PC-3	PC-3 (Zn res)
Cell radius [µm]	19.62	21.39	27.79	35.39
Cell height [µm]	8.99	9.68	9.32	9.75
Nucleus radius [µm]	11.08	11.63	13.75	14.68
Nucleus height [µm]	5.15	5.61	4.78	5.17

PROTEIN CONTENT (normalized)

	22Rv1	22Rv1 (Zn res)	PC-3	PC-3 (Zn res)
α/β Tubulin (MT)	100%	~100%	~100%	~100%
Vimentin (IF)	~0%	~0%	High content	High content
Actin (SF, AC)	100%	~100%	~200%	~200%

AGGRESSIVENESS **STIFFNESS**

FE MODEL OF CELL (ADHERENT)

- PARAMETRIZED hybrid computational model
 - Continuum (Neo-Hookean solid): nucleus, cytoplasm, actin cortex and membrane
 - Discrete elements: cytoskeleton with pre-stressed ABs and wavy IFs

STIFFNESS MEASUREMENT METHODS

Local stifness mapping: AFM

Global level: Shear & Real-time Deformability Cytometry (RT-DC)

RT-DC setup from Mietke, 2015

CELLULAR STIFNESS IN PROSTATE CANCER CELLS

22Rv1 have almost no vimentin compared to PC-3 cell line

PC-3 cells have double the content of actin proteins

AFM setup

- 1. Centered above nucleus (apex)
- 2. Above centrosome
- 3. Symetrically with 2. (in the cytoplasm)
- 4. At a receptor
- 5. Between apex and receptor

CYTOSKELETAL CONTRIBUTION TO CELL STIFFNESS

YD Bansod, 2016

CYTOSKELETAL CONTRIBUTION TO CELL STIFFNESS

YD Bansod, 2016

RESULTS & DISCUSSION

- AFM: vimentin and "deep cytoskeleton" role only minor
 - Actin cortex (AC) the most prominent among the organelles
- Shear & RT-DC: more pronounced response to cytoskeleton modifications (at the extremity of experimental boundary conditions > 20%)
- The ability of the FE model to mimic various experimental setups (easily adaptible)
- Allows for parametric studies

SHEAR & RT-DC

- Submodelling: boundary conditions from continuous problem transferred to hybrid model
- Strain distribution throughout all of the cytoplasm > 20%

LIMITATIONS of FEM simulations

Active cytoskeleton response (remodelling & contractility, etc.)

non-linear CSK properties

X Viscoelastic behavior of the cell Vicar, 2022

Compressibility of cytoplasm

Adhesion forces (AFM evaluated by DMT & JKR models)

To clarify the full extent of the stiffness change, other organelles may play crucial role

RESEARCH TEAM

FEM formulated by Y. D. Bansod & V. V. S. V. Jakka

Experimental work Members of Masarik lab

Lucie Jadrná

Jaromír Gumulec

Jiří Burša

Thank you for your attention!