MULTIMODAL MICROSCOPY WORKSHOP 2024, BRNO CZECH REPUBLIC

Mechanics by AFM

Dr Alexander Dulebo Application Scientist

The stiffness of living tissues spans a wide range

- Cancer, pathological alterations or developmental differentiation can change tissue:
 - Elasticity
 - Topography
 - Adhesion behaviour.
- Mechanics becomes a Biomarker.

Mechanics Becomes a Biomarker

Development

Adapted from Thompson et al. 2019, eLife. 8:e39356

Rapid changes in tissue mechanics regulate axon behavior in the developing embryonic brain.

Mechanics Becomes a Biomarker

Disease

Breast cancer malignant tissues display a broader stiffness distribution than their healthy counterparts.

Adapted from Plodinec et al. 2012, Nat Nanotechnol. 7(11):757-65

AFM-based Mechanical Measurements

- What do we measure?
 - Force distance curves elastic (Young's) modulus, deformation, adhesion, work of adhesion, energy loss (dissipation)
 - With delay relaxation time, creep, storage and loss moduli

A Full Set of Mechanical Modes

Multiparametric imaging of living Vero cells

3D-height at 240 pN

3D-contact point image

240 pN Contact Point

5

10

0

0

Apparent Young's modulus image Over 3D-height

Apparent Young's modulus

25

20

15

Distance [um]

SmartMapping – Flexible, Large Area Nanomechanical Testing

Available for:

NanoWizard 4XP and above (SPM ver. 7.0 and above)

Viscoelastic mapping: living fibroblast cells

Probing the elastic modulus of human osteoarthritic articular cartilage

https://en.wikipedia.org/wiki/Osteoarthritis M. Engelhardt, DZ Sportmedizin 54/6 (2003)

- 6 × 10 fluorescence images with optical tiling
- 3 × 36 maps (100 × 100 μm²)
- Large Scale Mapping using colloidal probe (r=5 μm)
- Loss of Nanoscale Surface Stiffness in early OA regions
- Clear loss of fibre alignment in arthritic areas
- Associated with cartilage remineralisation

Data Processing

1 kPa hydrogel in PBS SAA-SPH-5UM probe

Data Processing

MULTIMODAL MICROSCOPY WORKSHOP 2024, BRNO CZECH REPUBLIC

Integration of AFM with other techniques

Dr Alexander Dulebo Application Scientist

Innovation with Integrity

- 11007

AFM and optical microscopy

BioAFM and optical microscopy integration

- NanoWizard® head
- Cantilever holder
- 🖸 Petri dish
- Motorized stage
- Transmission light beam path
- Condenser lens
- Objective
- Fluorescence excitation path (backport)
- Side port with fluorescence camera
- 6 Eye piece beam path

While in motion, the tip scanner of the NanoWizard® AFM scans the surface of your steady probe.

While scanning the surface, a sample scanning AFM moves the sample holder.

Optical integration perfected

- Tip-scanner AFM design means sample does not move while AFM is scanning
- Standard condenser strongly recommended, particularly for living cells
- Perfect integration with inverted optical microscopes
- Compatible with optical super-resolution techniques (STED, STORM/PALM, SIM)
- Fully simultaneous operation with fluorescence, even for TIRF, FRET, FLIM, FRAP, FCS, Raman, SNOM...

DirectOverlay[™] 2 - optical image calibration

Automatic detection of the tip position in the optical image \rightarrow Correlation of optical and AFM space

- Import optical image into the AFM software
- Select region of interest and start scanning

All AFM images can be selected in the optical image

AFM & STED on living human lung cancer cells (A549)

- Living A549 cells imaged at 37°C in medium.
- Left: STED image of microtubules labelled with silicon rhodamine overlayed with AFM topography
- Mid: AFM QI topography image at 240 pN imaging force (height range 3.5 µm)
- Right: Corresponding Young's modulus image (z range 100 kPa)

Collaboration with Abberior Instruments – STEDYCON on Zeiss Axio Observer

Raman spectroscopy

What is Raman spectroscopy?

- Chandrasekhara Venkata Raman in 1928
- Inelastic scattering of photons \rightarrow shift in wavelength \rightarrow vibrational modes of molecules
- Non-destructive (30 mW)

Why is it interesting for integration?

• label-free identification of molecules

AFM-Topography

Raman-Map

Optical microscope view

Nanoscale IR spectroscopy in the life sciences

is a part of Bruker

Accumulation of TriAcylGlycerols in Streptomyces Species

Figure 3. (A) AFM topography and (B) chemical mapping at 1740 cm^{-1} for the two strains.

Deniset-Besseau, et al, Chem. Lett., 5 (4) 654–658 (2014)

FluidFM technology

FluidFM

- 300 nm 8 µm aperture
- ~5 pL volume
- Femtoliters per second flow

ETH zürich

CYTOSURGE[®]

FluidFM probes

FluidFM nanopipette

0.6 - 2N/m, aperture sizes: 300 nmNano-printing, manipulation of sub μ m particles, bacteria adhesion

Single cell manipulation, colloids, local dispensing & single cell

FluidFM nanosyringe 2 N/m, aperture sizes: 800 nm Injection into & extraction from Single cells

FluidFM micropipette

isolation and adhesion

0.3 - 4N/m, aperture sizes: 2, 4, 8 μ m

FluidFM prototyping probe

Aperture can be customized with Focused Ion Beam (FIB) 0.6 - 2 N/m, 30 + nmApplication depending on the customization

Major FluidFM applications

Cell adhesion/separation of adherently growing cells

FluidFM micropipette

Resulting force distance curve.

Phase contrast of living cells. A 4µm micropipette is used to separate the cell from the substrate.

30 to 200 CELLS PER DAY **nN to μN** pick up any cel **pN** RESOLUTION

single cells

Cell injection and extraction

Phase contrast and epifluorescence imaging of living CHO cells. A nanosyringe is used to inject Propidium iodide into the indicated cell

10+ CELLS/HOUR with AFM

90%+ SUCCESS RATE 95%+ VIABILITY

Nano spotting

Phase contrast while spotting a glycerol/water mixture on glass.

High reproducibility using the NanoWizard®

Optical image of the deposited spots: 2x2 maps with 3x3µm², gap 1.5 µm.

Slope channel useful to calculate the spotting area and volume.

Technical implementation on NanoWizard AFM

Cantilever holder with Cyto clip mounted on AFM head

MULTIMODAL MICROSCOPY WORKSHOP 2024, BRNO CZECH REPUBLIC

High-Speed AFM

Dr Alexander Dulebo Application Scientist

Innovation with Integrity

Cellular and Molecular Dynamics – Across Multiple Timescales

...

Speed of scanning

Nested scanner technology (NW5-4XP fast, NWUS2-3)

 Bi-derectional scanning (NW5-4XP fast, NWUS2-3, NanoRacer, FastScanBio, Resolve, MultiMode, Icon)

- Active balancing (NWUS3, NW5 fast) faster scanning over large scan ranges
- 3D acceleration sensor near the probe and feedforward technology (NWUS3)

Specific Biotin-Streptividin Binding Dynamics in DNA Nanostructures for Targeted Cell Stimulation

Overview

Topography: z-range 3.1 nm, scan speed: 4 sec/frame

in collaboration with C.M. Domínguez, C.M. Niemeyer, Institute for Biological Interfaces (IBG-1), KIT (Germany).

Dynamics of Collagen I Fibrillogenesis

- Reduced fibrillogenesis kinetics at pH 9.2 (high ionic strength of KCL lowers IEP of collagen I fibrils)
- Faster Assembly Kinetics at pH 7.4 (no additional Gly)
- Higher [K+] are critical for the proper D-banding packing

Stamov DR et al., Ultramicroscopy (2015) 86-94

Observing amyloid fibrils disassambly *in situ*

Before injection

 α-syn fibrils observed with HS-AFM before chaperone and ATP injection (Full image size: 350 × 350 nm; imaging rate: 300Hz, total time: 16 min 9 s). After injection

 Chaperone-induced fibril depolymerisation after two consecutive injections of ATP and ATP-regeneration system (Full image size: 1000 × 1000 nm; imaging rate: 100Hz, total time: 90 min). From: PNAS September 7, 2021 118 (36) e2105548118

- Cumulative disaggregation events were plotted as a function of time
- Fast and stable imaging if big and loosely bound (poly-l-lysine) fibrils for minutes.

High-Speed AFM molecule analysis example

Adapted from: H. Burdett, M. Foglizzo, et al., Nucleic Acids Research, 2023, Vol. 51, No. 20

Acids Research, 2023, Vol. 51, No. 20

1.56 fps

High-Speed AFM molecule analysis example Image averaging

Adapted from: H. Burdett, M. Foglizzo, et al., Nucleic Acids Research, 2023, Vol. 51, No. 20

High-Speed AFM molecule analysis example Localisation AFM (LAFM)

Localisation AFM

AFM

"Localisation AFM (LAFM) images of di-nucleosomes were generated using 273 HS-AFM images of a single di-nucleosome captured at 3 pixel/nm and processed with bicubic subpixel localisation."

Adapted from: H. Burdett, M. Foglizzo, et al., *Nucleic Acids Research*, 2023, Vol. **51**, No. 20

Heath, G.R., Kots, E., Robertson, J.L. et al. Localization atomic force microscopy. *Nature* **594**, 385–390 (2021)

Innovation with Integrity

18 June 2024

43

© 2021 Bruker

MULTIMODAL MICROSCOPY WORKSHOP 2024, BRNO CZECH REPUBLIC

High-Speed AFM molecule analysis example Simulated AFM images

Simulated AFM (BRCA1:BARD1)

"Simulated topographies were generated using Mat-SimAFM software available at: <u>github.com/George-R-Heath/Mat-SimAFM</u>"

Cryo-EM maps

Adapted from: H. Burdett, M. Foglizzo, et al., Nucleic Acids Research, 2023, Vol. 51, No. 20

High-Speed AFM molecule analysis example Simulated AFM images using Biomolecular AFM Viewer

RESEARCH ARTICLE
BioAFMviewer: An interactive interface for
simulated AFM scanning of biomolecular
structures and dynamics
Romain Amyot ¹ ", Holger Flechsig _© ² *
1 Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima, Japan 2, Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma- machi, Kanazawa, Ishikawa, Japan
Current address: Adhesion and Inflammation Lab (LAI), Aix-Marseille University, Marseille, France flochsig@staff.kanazawa-u.ac.jp

Amyot R, Flechsig H (2020) BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and dynamics. PLOS Computational Biology 16(11): e1008444

Mouse immunoglobulin IgG2a (PDB ID:1IGT)

Tip radius: 5 nm

Tip radius: 2 nm

NanoRacer High-Speed AFM

NanoRacer High-Speed AFM

NanoRacer head + stage + scanner

NanoRacer head flipped up + stage + scanner

NanoRacer Head + Stage + portable scanner unit detached

Thank you!

Innovation with Integrity

Innovation with Integrity